# Carbon Fiber Instrument Panels

#### By John DeRosa

john@derosaweb.com http://aviation.derosaweb.net

Updated

#### PLEASE NOTE

This document <u>may have been updated</u> with new information, changes, or corrections.

Be sure to visit my presentation web site and download the latest version of this document. It could make an important difference to you!

http://aviation.derosaweb.net/presentations

Thank you, John OHM Ω

#### Instrument Panels

Solid Carbon Fiber RV-6





Instrument Panel

Carbon Fiber
Veneer
Overlays





Instrument Panel

Carbon Fiber
Veneer
Overlay
Types



solutions.3m.com → Series1080







Source: http://dragonplate.com



http://dragonplate.com

Veneers are well suited for covering large surfaces or for decorative trim. Comprising of 100% real carbon fiber in a harness-satin weave, this veneer presents a unique appearance.

The gloss and matte finishes provide any project with a distinctive facade. Material will form into a cylinder as small as 1 inch. Can also be used for outdoor applications as we utilize a UV resistant resin that extends the life of the part and finish under sun exposure.



Original Instrument Panel



Original Instrument Panel



#### Sanded



Primed And Painted



## Sizing the CF Sheet

(3M Adhesive)



Glued
Down
CF Sheet
to the
Instrument
Panel



Tools
Used to
Trim the
Perimeter
of the CF
Sheet

**Next ... Cutting the Instrument Holes** But ... How to cut the holes?

Glued and Trimmed CF Sheet



## Which tool to use to cut the Instrument holes?



- 2. Water Jet
- 3. Nibbler
- 4. Fly Cutter
- 5. Circle Cutter









## Common Instrument Hole Sizes & Conversions



| Common<br>Non-Metric<br>Sized Holes | Closest<br>Metric Sizes<br>(over/under) |
|-------------------------------------|-----------------------------------------|
| 2-1/4" (2.25")                      | 57mm (2.24")<br>58mm (2.28")            |
| 3-1/8" (3.125")                     | 79mm (3.11")<br>80mm (3.15")            |

| Common<br>Metric<br>Sized Holes | Closest<br>Non-Metric Sizes<br>(over/under) |
|---------------------------------|---------------------------------------------|
| 57mm                            | 2-7/32" (56.36mm)<br>2-1/4" (57.15mm)       |
| 80mm                            | 3-1/8" (79.375mm)<br>3-5/32" (80.17mm)      |





Working from the backside of the instrument panel





Solution!
Cut 1"
Starter
Holes



The starter hole's placement does not need to be extremely accurate





#### Semi-Rigid Carbon Fiber Veneer rge Hole







**Completed Sawn Hole** 



**CF Plugs** 



Results – Clean Holes



Fill the unwanted holes with epoxy to stiffen the CF covering



Fill Holes
With Epoxy
Mixed with
MicroBalloons

MICRO BALLOONS

COMPARED TO A STRAND OF HAIR

Source: http://www.westsystem.com

**I** Holes



Could also use Microfibers

with o-



Source: http://www.westsystem.com



### Results (Epoxy uncured)





How to Fill the Altimeter Cutouts?



(Epoxy uncured)



Filled
Cutouts
Results

(Epoxy Cured)



Final Result

## Semi-Rigid Carbon Fiber Veneer



Final Result











#### 3M Di-NOC Non-Rigid Wrap



# Also known as "Contact Paper"







#### 3M Di-NOC Non-Rigid Wrap



Simply apply the wrap to the surface and then cut around the edges

Some moderate heat can be applied to the material to form it around curved surfaces such as the edges of instrument panels

John DeRosa © 2023



Example Panel



# Example Panel

#### 3M Di-NOC Non-Rigid Wrap



### **Pros and Cons**

# Carbon Fiber Semi-Rigid

- Pros
  - Toughness
- Neutral
  - Appearance
- Cons
  - High Cost (~\$75+)
  - Difficulty Tooling
  - Rigidness
  - One color available

# 3M Di-NOC Non-Rigid

- Pros
  - Low Cost (~\$15+)
  - Ease of Tooling
  - Many Colors
  - Curve Flexibility
- Neutral
  - Appearance
- Cons
  - Not very tough
  - Deformation

# Sources

### **CF Semi-Rigid Sheet**

- dragonplate.com
- eBay

#### 3M Di-NOC Non-Rigid

- Amazon
- eBay
- Many other vendors

# See My Other Presentations

- Glider Electrical Wiring
- Transceiver Troubleshooting
- Oxygen Systems
- Working with Glider Air Lines
- Sailplane Wiring
- Trailer Wiring & LED Lights
- Pilot Relief Systems
- Battery Testing

- Spar Alignment Tool
- L'Hotellier Fittings
- Carbon Fiber Panels
- IGC Filename Decoding
- Blanik L-23 Strut Work
- Survival & Bailout Kits
- Removing Painted Contest IDs

http://aviation.derosaweb.net/presentations

Let me know of any comments! jhderosa@yahoo.com